

ATDI

Critical communications in rail environment

ATDI Group 11 boulevard Malesherbes 75008 Paris, FRANCE contact@atdi.com Phone: +33 1 53 30 81 41

www.atdi.com

www.atdi.com

About Us

CRITICAL COMMUNICATIONS NETWORK PLANNING AND MODELLING SOFTWARE SOLUTIONS FOR BOTH INDOOR AND OUTDOOR

OUR FOCUS IS TO SUCCEED AT EVERY LEVEL OF OPERATIONS IN ELECTROMAGNETIC SPECTRUM OPERATIONS

ATDI are global leaders in the development and implementation of automated spectrum management solutions.

For over three decades, we have backed over 2,000 civil and defence spectrum agencies, operators and vendors. Our solutions continue to evolve to meet the growing needs of the critical communications industries.

We provide a unique and global solutions for:

- Radio planning and optimisation: activities for all communication and transmission systems used by the Ground/Air/Sea/Space forces;
- Frequency management (FM)
- Spectrum management solution (SMS): for planning, coordinating, and managing joint use of the EMS through operational, engineering and administrative procedures;
- Electronic Warfare (EW) management / interception and intelligence

ATDI I Automated Battlespace Spectrum Management

Our Offices Global Footprint

- Allows us to leverage different time zones
- Provide support around the clock
- Fast response times
- Draw resources from across the group to support larger projects ensuring we offer the very best services to our end users
- Shared experiences combining many man-years experience across the group. At every stage of the project (from project outset to going live) we aim to learn and improve our services. To do that we carry out regular internal project reviews and a group review at handover.

Our Services

Training

Customised training service online or onsite.

24/7 global technical support via phone, email and web-conference

System Customisation

Business analysis, system design, architecture, customisation, integration, and configuration.

Spectrum consulting

Provide professional consulting services in spectrum engineering and management to solve any spectrum issues.

Cartographic data

Medium to High resolution DTM and Clutter library. Cloud base digital map image streaming and cache support.

3 System Deployment & Maintenance

Support on Go-Live, Testing, and bug fixing. On-going maintenance support with software updates.

Key References in Rail Industry

- Boldyn Communications, UK
- TGV (INEO SUEZ), FRANCE
- PKP POLISH RAILWAY LINES S.A, Poland
- Sydney Trains, Australia
- Public Transportation Authority of WA, Australia
- Queensland Rail (Parsons Brinckerhoff consulting), Australia
- Tasmania Rail, Australia
- Victrack, Australia
- Vodafone International, Australia
- Huawei Australia
- KORAIL, S. Korea
- Gimpo GoldLine, S. Korea
- GYPROTRANSSIGNALSVYAZ (GTSS SPB), Russia
- INDRA, SPAIN
- Ingeniería y Economía del Transporte S.A. (Ineco), SPAIN

- WSP, UK
- ATKINS RAIL, UK
- WHP, UK
- INTRACOM, GREECE
- GLOBAL NOVICOM, KAZAKHSTAN
- AECOM FOR CROATIA RAILWAY LINE, Croatia
- SEPURA, Malaysia
- ST Engineering, Singapore
- DAMM Cellular Systems India Pvt Ltd, India
- Kontron Transport GmbH, Austria
- United Group Infrastructure, Australia
- HMF Smart Solutions GmbH, Germany
- Stadler Rail, Switzerland

All-in-One RF engineering solution for Rail Network Design

HTZ Communications

HTZ Communications SUPPORTS ALL TECHNOLOGIES & FUNCTIONS BETWEEN 8 kHz upto 1 THZ:

Radio cellular technologies: GSM/GSM-R, GPRS, EDGE, EDGE Evolution PMR, Trunked Radio Systems (TETRA, TETRAPOL, APCO-25, MPT 1327), GSM-R, DCS, CDMA EVDO GPRS, Wi-Fi (802.11a/b/g/ac), WiMax (802.16 a/d/e), UMTS, R99, HSDPA, HSUPA, HSPA+, DB-HSDPA, DC-HSDPA, CDMA 2000 1x, CDMA 200 EV-DO, DCS, LTE Advanced (latest 3GPP release), MBSFN-LTE, NB-IoT (3GPP), IoT/LoRA/SigFox, WiFi, Ingenu, LoWPAN, RPMA, Zigbee, Enocean, ISA 100, LTE-M, LTE-R (TDD/FDD), PS-LTE, ZWave, Mesh network, Smart Grid, CISCO smart grid technology, 5G-NR (FDD/TDD), SCADA, FRMCS, etc.

Satellite/Earth station

Microwave-links & Point to Multi-Points

```
Aeronautical & UAVs : Communications (Ground To Ground/Ground To Air), Radio Navigation (GP, markers, Loc, MLAT, DME, TACAN, NDB, Markers, GBAS RX, MLS AZ, etc.) and Surveillance systems, counter-drones
```

```
Radio-localisation: (DF/Sensors/MLAT, Telemetry, TDOA, RSSI, etc.)
```

Broadcast : Radio analog and digital (FM, AM, LF/MF, TDAB, etc.), TV analog and digital (DVB, DVB-T2, ISDB-T, DMR, DVB-S, DVBS2, etc.)

Subscribers and User Equipment

Supporting Multi-Technology Capability

It is critical to support technology evolution for any current and future network migration. HTZ supports any technologies between 8 kHz and 1 THz. Some of the common radio systems in Rail Communications are supported.

- GSM-R/LTE-R & 5G
- FRMCS
- Microwave-links & Point to Multi-Points
- Leaky Feeder
- TETRA
- WiFi
- Mesh network
- And more

Supporting the entire life cycle of the network planning

i) Site acquisition: Site database management (technical and administrative data), rank of potential candidates sites (backhaul availability, site cost, planning coverage targets....

ii) Best site selection: automatic network planning of;

- Automatic site candidates selection according to the coverage and traffic targets
- Automatic Cell Planning (ACP)
- Automatic Site Placement (ASP)

iii) DL/UL coverage calculation and analysis:

- Automatic link budget calculator (DL/UL) taking into account % of reliability at the cell edge
- Composite, best server (1st, 2nd, ...), overlapping, number of servers, etc.
- Coverage analysis (surface, population, vectors, points...)

iv) Traffic analysis:

- Import of traffic map (user profiles with traffic demand, subscribers database, density of users...)
- Automatic traffic dimensioning (Erlang and data)
- Network traffic congestion analysis

Supporting the entire life cycle of the network planning

v) Interference and Automatic frequency assignment:

- Interference analysis (Co-channel, adjacent, N+2,...)
- Spurious interference analysis (intermod , dezensification, coexistence analysis...
- Automatic Frequency Planning (AFP)

vi) Automatic optimization:

- Automatic site optimization in order to improve the coverage inside a polygon or along a vector line
- Automatic site optimization in order to reduce the interference
- Automatic site optimization to increase the number of connected subscribers (calculation done according to the subscriber distribution)
- Automatic search of repeaters/gap filler to improve the existing coverage and to solve the gap of coverage.

vii) Handover and neighbour analysis :

- Handover maps
- Automatic Neighbor list

Viii) Drive test analysis and correlation with prediction:

- Comparison of the measurement data (drive tests, punctual measurements...) and the prediction.
- Automatic tuning propagation model
- ATDI I Critical Communications / RailComms
- comms KPI analysis with statistics charts

Worldwide Cartographic Data Library

ATDI offers a worldwide cartographic data library for all HTZ software license users. The data is developed using the open-source maps from national government agencies for GIS and land survey (e.g Norwegian maps authority/geonorge.no)

The quality of maps vary between 1 m (DTM, clutters and 3D building) and 25 m (DTM and clutters), depending on the source resolution,

ATDI I Critical Communications / RailComms

	COMMENT	STEPAN	PROJECTION	DATE	LANCE
J.	Belgium: Brugge-Oostende	1	BLAMB	2020-04-05	DTM CLUTTER BUILDINGS
	Belgium: Brussel	1	BLAMB	2020-04-05	DTM CLUTTER BUILDINGS
J.	Belgium: Flanders	10	BLAMB	2020-04-05	DTM CLUTTER BUILDINGS
Ŀ	Belgium: Gent	1	BLAMB	2020-04-05	DTM CLUTTER BUILDINGS
Ŧ	Slovakia administrative shapes	0	4DEC	2020-04-03	ADMINISTRATIVE
Ł	Vanuatu	25	4UTS58	2020-03-31	DTM CLUTTER
Ł	Brazil: Band 1 (North)	25	SIRG2000	2020-03-28	DTM CLUTTER
Ŧ	Brazil: Band 2	25	SIRG2000	2020-03-28	DTM CLUTTER
Ŧ	Brazil: Band 3	25	SIRG2000	2020-03-28	DTM CLUTTER
Ł	Brazil: Band 4	25	SIRG2000	2020-03-28	DTM CLUTTER
Ł	Brazit Band 5	25	51RG2000	2020-03-28	DTM CLUTTER
Ł	Brazil: Band 6 (South)	25	SIRG2000	2020-03-28	DTM CLUTTER
Ł	Lebanon	20	4UTNB6	2020-03-26	DTM CLUTTER
Ł	Serbia	20	4UTN34	2020-03-21	DTM CUJTTER
Ł	Canada: Montreal	5	83UTN18	2020-03-07	DTM CUITTER BUILDINGS
T	Russia: Murmanks	2	4UTNB6	2020-02-12	DTM CLUTTER BUILDINGS

Integration with Web-Map Services

HTZ utilizes web-serviced map images such as Google Maps, Bing Maps, Here, and so on, or specific cartographic collection from Geoportals which is available in some countries (Poland, France, Spain, United States, etc.)

Managing GIS Data; Multi-Map

HTZ enables to use and manage different maps (DTM, clutter, images...) using different resolutions (e.g 2m, 10m, 50m, 100m...) and allows the users to use and switch between maps in a single scenario. As long as multiple raster resolution topographic maps are loaded, the software will support the multimap display depending on the zoom levels.

ATDI I Cri

Managing GIS Data; Multi-Map Offline Cache

If the customer provides the sources (offline), it is simply to set up the multi-map. If no sources are available, ATDI can provide offline cache images obtained from Google Maps, MS Bing, etc.

Supporting Robust GIS Data Manipulation

RF planning tool should have a capabilities to interpolate such dynamic structures and environments in DTM/DEM along the rail corridors as it's the main inputs for propagation modelling accuracy. HTZ supports rail centerline importation in vector formats.

- Cuttings through mountains
- Tunnels
- Rail Corridor elevations
- Footbridges
- Platforms and Stations

Supporting Robust GIS Data Manipulation

Creating multiple rail clutters depending on environment to provide higher flexibility to tune environment models which also impacting the accuracy of the propagation modelling

0	Open/Open in <u>Uurban</u>
1	Water
2	Mean Suburban
3	Dense Suburban
4	Mean Urban
5	Dense Urban
6	Skyscrapers
7	Village
8	Industrial
9	Forest
10	Park
11	Railcorp Building
12	Tunnel
13	Rail in Open
14	Rail in Suburban
15	Rail in Urban
16	Rail in Village
17	Rail in Industrial
18	Rail in Forest
19	Bridge over rail
	bridge erer run

ATDI I Critical Communications / RailComms

Supporting Robust GIS Data Manipulation

Tunnels and stations/platforms, HTZ imports ESRI (.shp), AutoCAD (.dxf), or laser scans (LiDAR in LAS or LAZ) in very high resolution to create the indoor models.

ATDI I Automated Battlespace Spectrum Management

www.atdi.com

Supporting multiple frequencies and technologies **Propagation models**

HTZ has a complete propagation model library including all ITU-R recommendations and industry standards such as 3GPP, COST models. It supports 3D ray-tracing in various modes and atmospheric effects also can be simulated. If one has a customised propagation model, it can be imported in .dll.

- 1. Free Space model
- 2. Diffraction models
- 3. Tropo-scattering models
- 4. Deterministic ITU Recommendations
- 5. Industry standard models including aeronautical models
- 6. Specific/external & custom-built models
- 7. HF conductivity model

Deterministic model from a	bout 30 MHz to 1 TH							
Propagation losses =	Free space loss	+ Min [Diffraction, Tropo	o, Ducting, Reflections, Absor	rption]attenuati	on	+ Attenuation by atmospheric gases and rain	+ Other atte	enuations (option)
□ Near field calculation	20.LOG[(4-PLD)/ wavelength] ISO	Diffraction geometry Sub Deygout 94 FF Deygout 96 SS Deygout 91 N Builington CC Deta Builington CC ITU-R 526, cylinders CC Visibility / Indoor CC No diffraction loss N Dever correction (angle) N More methods FZ Absorption / Penetration Dcc Linear attenuations CC	appeth attenuation 3C Fressel integrals Standard MD 91 method R Coarse integration R Prime Pare Delta Bullington Delta Bullington Despoid Free No subpath loss More methods Fourth-power law 2 tting S Dutting	Dreflections)Multipath teflection dist. lim Elevation filter : Reflectivity 0.00: refraction cal oposcattering)TU-R 617-3 iequatorial subtropical subtropical subtropical sea temperate sea Surface refractivit)TU-R 617-5	t (m) 1000 > (m) 0 L-0.2 0.500 culator NBS 101	Gases / Fog / Clouds / Sand Gases / Fog / Clouds / Sand Gas ITU-R 676 (1-1000 GH2) Gas ITU-R 1820 (47-48 GH2) Vapour 7.50 gm hPa 1013 Water 0.320 T 10.00 C° Scintiliation (< 20 GH2) Fog ITU-R 840 (> 10 GH2) Duststorm (<115 GH2) Rain / Snow Rain ITU 838/530 Rain map Rain rate (mm/h) 30.89 Rein rate (mm/h) 30.89 Time (0.001 to 1%) 0.010000 I sotherm 0°C 3.00 km	Slope model coeffi A factor 1.0 Attenuation Diffract. corre Ground reflectic Ground reflectic 2.2 Ray model - 1 No ground reflectic	dents
Propagation methods TTU / FCC (empirical and TTU / FCC (empirical and TTU # 525/526-11. TTU # 525/526-11. TTU # 1546-6 (30-4) TTU # 1512-6 (MF- TTU # 152-14 (0.14) TTU # 152-14 (0.14) TTU # 152-14 (0.14) TTU # 358 (10 Hrz- TTU # 152 (MT 20 Hrz- TTU # 102 (MT 20 Hrz- TTU # 100 (MT 20 Hrz-	half determ.) 100 MHz) JHF) 0 GHz) 0 GHz) 100 Htz) 100 MHz) 500 MHz) 1000 MHz) 500 MHz) 100 GHz) 10 GHz)	3GPP / COST (empirical) Durkin 3GPP-1TE rural (0.9-2 GHz) SUF method (2.5-2.7 GHz) Okumura-Hata (150-1500 MHz) Hata - Cost 231 (150-2000 MHz) Hata Seamcat (30-3000 MHz) Cost 231 open Walfach-tikegami (800-2000 MHz) OHD TS8-88-8 (30-1500 MHz) Modified Hata by ACMA M.2412 UM-LUMa (0.5-100 GHz)	Specific / External BR method (uv) Wojnar method (1-10 CCIR - MF (550-1700 Egli (V/UHF) TIU-R P, 529-3 TIU-R 737 (03-1000 Cardif DGA-MI (0.3-21 Ext. model (DLL) Composite output Use Tx/Rx effectiv Flat earth profile s Reverse profile	000 MHz) IkHz) 00 GHz) Select ve heights sent to DLL	Global paramet Earth radius Earth radius RMS wave hr Variability Location Time Indoor	ters skm land ss km see eight (m) 0.00 pc Variability (P2P unwant 50 pc Time (0 to 50 pc) 0=rai Clutter Conductivity SH	ioffset d8 gth=E-Offset ed signal) ndom 50.000 ITU zones Lose	Info Generic propagation model valid from about 30 MHz to 1 TH2: A map-based deterministic propagation model to fuffi all VU/S/BHF requirements at the same time Diffraction component non line of sight path (NLOS) Deygout 1966 is limited to 3 obstacles (TU-R 536-11) Deuron: # 0.4 d

Full-Deterministic Propagation models using customised GIS data inputs

Full-Deterministic Propagation models

- Path specific,
- Superior accuracy,
- · Dependent on terrain and clutter height
- · Calculates free-space, diffraction and reflections
- Example: ITU-R P.525/526 Deygout-94 method

Empirical modelling: the calculation of the signal loss is based upon propagation formulas

ATDI

Comparison between SPM & Deterministic models

SPM model	Deterministic model
SPM model is fundamentally a curve fitting approach to measured data in order to model	The general form of the deterministic model is
the path loss. It also includes a correction term to account for attenuations caused by	Path Loss = Free Space Path Loss + Diffraction attenuation + Sub-Path
diffractions from local obstacles. Therefore, the SPM model fundamentally consists of a	attenuation.
curve with local corrections provided by the diffraction term. The K2 and K5 parameters	Since all components of the model are deterministic and terrain height is
control the slope of the curve (and hence the path loss exponent), and other K factors	the only height of interest (i.e. no clutter height is considered and hence
control the Y Intercept.	no need for clutter height tuning), there's no requirement for curve fitting
As field measurements are highly correlated with the characteristics of the environment in	to adapt the model to rail services environment.
which they are carried out, the K values would have to be tuned in order to adapt the	
SPM model to local environment. This implies re-using K values from one project to	
another project will introduce inaccuracies and error to the path loss predictions.	
Another source of complication with the SPM model is its dependence on the Transmitter	
and Receiver heights. Once K values are tuned for a given Tx and Rx heights, changing	
these heights could compromise the accuracy of the SPM model, as it will affect the Y	
intercept of the fitted curve.	

Comparison between SPM & Deterministic models

Difference in Path Loss Correction Term

SPM and Deterministic models make use of Diffraction to provide compensation to path loss calculations. The accuracy of diffraction calculations depends on the number of edges that the given method considers in its calculations. While the maximum number of diffracting objects that are considered in SPM are 3 (ITUR 526-5), there are no limits in other models such as Deygout 94 method

Comparison between SPM & Deterministic models

Line of Sight Conditions

Environment	Full deterministic	SPM Model		
LOS	ITU P.525, function of frequency and distance	Hata model, function of tuneable K factors as well as Tx & Rx antenna heights		
nLOS	Standard Sup-Path model, function of terrain profile, Tx & Rx antenna heights			
NLOS	Deygout 94 model, considers unlimited obstacles, function of terrain profile as well as Tx & Rx antenna heights	Diffraction models such as Deygout 66, considers Max. of 3 obstacles, function of terrain profile as well as Tx & Rx antenna heights		

Comparison between SPM & Deterministic models

Correlation comparison samples

	Fu	II-Deterministic M	odel	SPM Model			
Site	Std. Dev	Mean error	Cor. Factor	Std. Dev	Mean error	Cor. Factor	
Site_1	5.73	-2.68	0.86	9.1	7.7	0.58	
Site_2	5.92	-5.27	0.85	8.74	-0.33	0.53	
Site_3	2.7	0.03	0.96	7.45	9.1	0.6	
Site_4	3.26	-0.79	0.95	7.15	3.21	0.69	
Site_5	3.07	-0.81	0.95	5.9	-0.05	0.63	

Indoor & Outdoor Network Design (3G, 4G & 5G)

ATDI

Link Budget Calculation (1/2)

HTZ provides an in-built link budget calculator

to calculate them based on different input parameters:

- RSRP threshold for best server and RS coverage display and during SNIR calculations
- Coverage threshold for the minimum field strength (or power received) on the UE from the eNodeB/gNodeB. It is

set in the Threshold parameters box as the Global threshold, or Cov. threshold in station parameters (if mode

- "Threshold from stations" is set in Threshold parameters box). It is an unbalanced threshold and is calculated from:
- ✓ Network parameters (Bandwidth, Probability to achieve, Standard deviation);
- ✓ Downlink parameters: SNIR required for throughput, Noise figure.

- Rx threshold for the minimum field strength (or power received) on the eNodeB/gNodeB from the UE. It is an unbalanced threshold and is calculated from:

- ✓ Network parameters (Bandwidth, Probability to achieve, Standard deviation);
- ✓ Uplink parameters: SNIR required for throughput, Noise figure.

Station balanced path thresholds							
Item	Base station	Terminal	ОК				
Nominal power (dBm)	30.0	23.0	Cancel				
Additional losses (dB)	0.0	0.0	Power				
Tx gain (dB)	0.00	0.00	converter				
Rx gain (dB)	0.00	0.00	Load .TRM				
Tx losses (dB)	0.00	0.00	Save .TRM				
Rx losses (dB)	0.00	0.00					
Tx gain mimo (dB)	0.00	0.00]				
Rx gain mimo (dB)	0.00	0.00]				
Sensitivity (dBm)	-119.0	-110.0					
Reference frequency (MHz)	4000.000000	4000.000000					
System gain (dB)	140.00	142.00]				
Balance (dB)	-2.00	2.00					
Balanced sensitivity (dBm)	-110.00	-117.00					
Balanced threshold (dBuV/m)	39.26	32.00					
	Apply as glob	al threshold	Global threshold				
	Cov. and Rx thresholds						

ATDI

Link Budget Calculation (2/2)

HTZ provides an in-built link budget calculator

to calculate them based on different input parameters:

- Maximum permissible path loss (dB) downlink for the Radio link budget for downlink. It is calculated from:

o eNodeB/gNodeB parameters (power, Tx gain including MIMO gain and losses) and UE parameters (Rx gain including MIMO gain and losses);

- ✓ Network parameters (Bandwidth, Probability to achieve, Standard deviation);
- ✓ Downlink parameters: SNIR required for throughput, Noise figure.

- Maximum permissible path loss (dB) uplink for the Radio link budget for uplink. It is calculated from: o eNodeB/gNodeB parameters (Rx gain including MIMO gain and losses) and UE parameters (Power, Tx gain including MIMO gain and losses);

- ✓ Network parameters (Bandwidth, Probability to achieve, Standard deviation);
- ✓ Uplink parameters: SNIR required for throughput, Noise figure.

ms

	Val	ue	Item	eNodeB	UE
Reference frequency (MHz)	450.000000		Transmit power / port (dBm)	43.0	23.0
Bandwidth (MHz)	10.000000		Tx gain (dB)	17.00	0.00
Probability to achieve (pc)	95.00	0 = not used	Rx gain (dB)	17.00	0.00
RSRQ required (dB)	-19		Tx losses (dB)	1.00	0.00
STDDEV / Slow fade margin (dB)	3.00 /	4.9	Rx losses (dB)	1.00	0.00
		UL ratio 54,29	Tx gain mimo (dB)*	3.00	0.00
	FDD PD:	SCH (pc) 100.00	4G Rx gain mimo (dB)*	6.00	0.00
Numerology: 🔿 0 🔿 1	02 03 04	4 ○5 ●4G		*only if not already	included in Tx/Rx
Numerology: 0 0 1	O 2 O 3 O 4	4 () 5 () 4G	Item	*only if not already Downlink	y included in Tx/R: Uplink
Numerology: 0 0 1 Item Min throughput per user (kbps)	0 2 0 3 4 Downlink	4 () 5 () 4G Uplink 1000.0	Item Max permissible pathloss (dB)	*only if not already Downlink 161.56	v included in Tx/R: Uplink
Numerology: 0 1 Item Min throughput per user (kbps) RBs available	0 2 0 3 0 4 Downlink 1000.0 50	4 0 5 • 4G Uplink 1000.0 50	Item Max permissible pathloss (dB) Balanced thresholds: DL/UL (dBm)	*only if not already Downlink 161.56 -83.06	v induded in Tx/R: Uplink 145.06 -100.06
Numerology: 0 1 Item Min throughput per user (kbps) RBs available SNIR required for throughput (dB)		4 0 5 (a) 4G Uplink 1000.0 50 -5	Item Max permissible pathloss (dB) Balanced thresholds: DL/UL (dBm)	*only if not already Downlink 161.56 -83.06 Assign balanced th eNodeB	v included in Tx/R Uplink 145.06 -100.06 irresholds to active
Numerology: 0 0 1 Item Min throughput per user (kbps) RBs available SNIR required for throughput (dB) Noise figure (dB)	2 3 4 Downlink 1000.0 50 50 -5 5.0	4 0 5 0 4G Uplink 1000.0 50 -5 4.5	Item Max permissible pathloss (dB) Balanced thresholds: DL/JL (dBm)	*only if not already Downlink 161.56 -83.06 Assign balanced th eNodeB	v included in Tx/R Uplink 145.06 -100.06 vresholds to active
Numerology: 0 0 1 Item Min throughput per user (kbps) RBs available SNIR required for throughput (dB) Noise figure (dB) KTBF (dBm)	2 3 4 Downlink 1000.0 5 50 -5 5.0 -99.46 -6 1000.0	4 0 5 0 46 Uplink 1000.0 50 -5 4.5 -99.96	Item Max permissible pathloss (dB) Balanced thresholds: DL/UL (dBm) Strategy	*only if not already Downlink 161.56 -83.06 Assign balanced th eNodeB	Uplink Uplink 145.06 -100.06 rresholds to active
Numerology: 0 1 Item Min throughput per user (kbps) RBs available SNIR required for throughput (dB) Noise figure (dB) KTBF (dBm) Coverage / Rx thresholds (dBm)	0 2 0 3 0 Downlink 1000.0 5 50 -5 5 5 99.46 -99.56	4 0 5 0 46 Uplink 1000.0 50 -5 4.5 -99.96 -100.06	Item Max permissible pathloss (dB) Balanced thresholds: DL/UL (dBm) Strategy Ouser defined RBs O Lowest SNIR and min RBs	*only if not already Downlink 161.56 -83.06 Assign balanced th eNodeB	Included in Tx/R Uplink 145.06
Numerology: 0 1 Item Min throughput per user (kbps) RBs available SNIR required for throughput (dB) Noise figure (dB) KTBF (dBm) Coverage / Rx thresholds (dBm)	2 3 4 Downlink 1000.0 50 -5 5.0 -99.46 99.56 -91.56	4 0 5 0 46 Uplink 1000.0 50 -5 -4.5 -99.96 -100.06 eNodeB	Item Max permissible pathloss (dB) Balanced thresholds: DL/UL (dBm) Strategy O User defined RBs O Lowest SNIR and min RBs (Available RBs	*only if not already Downlink 161.56 -83.06 Assign balanced th eNodeB	Uplink 145.06

Managing Technical Parameters

ATDI I Criti

HTZ provides a comprehensive technical parameter setup for both transmitters and receivers. In addition, database can be used to select equipment (Tx/Rx) and antennas or predefined station/mobile settings.

Once the coverage of each station has been performed, it will be automatically attached to the stations. So, when saving the network (either to a Network file .EWFx) or a station database (Internal or SQL), the coverage will be saved along with the station locations and parameters. No need to perform the coverage again and can be used for further calculations (Composite coverage, Best server, SNIR maps, Throughput maps, ...).

	Tx/Rx parameters: 6 BTS-6 X	Tx/Rx parameters: 6 BTS-6 X
	General Patterns Channels Site Advanced	General Patterns Channels Site Advanced
Coverage parameters × Height of Rx antennas m Default Distance (km) 50.000 m Min coverage value (dBuV/m) 1 Storage Wanted threshold auto m Perform missing coverage	General Patterns Dhannels Site Advanced Type Signal Type Signal Status Prequency plan TxpRx meutral (0) TETRA (11) Unknown (0) TETRA TxpRx # 6 Nominal power (W) SO Opmanic (80) 0 Tx and gain (80) 7.15 Losses (80) 0.00 E.LR.P (W) 212.3098 Prequency (Met) 00.00000 Antenna height (m) 3.00 Tx bandwidth (ket) 25.00 Versible servation Precedenation Versible servation Status Prequency (Met) 00.00000 Tx bandwidth (ket) 25.00	General Patterns Duances Size Advanced MSS,BPE 20 reverse tit Antena file must be reloaded \Box antenna H+V (1 plantation) ••••••••••••••••••••••••••••••••••••
Vector polygon limited	Comment:	Tuo ina element rat - Satelite ratsion number a
Vector line limited		
Vector path limited	< >	Save .TRX Load .TRX 3D creation Modify coverage*
cal Communications / Rail	agi rewo v	
Model Options OK Cancel	OK Annuler	OK Annuler

Massive MiMO Beamforming (1/3)

Key capabilities

Multi-port Beam-forming Multi-user MIMO (massive MIMO)

Antenna database

Managing multiple vendors

Smart antenna – auto switch

Transmission diversity (SD-MIMO) Spatial multiplexing (SM-MIMO) Multi-user (MU-MIMO) Mixed (all above) Auto switch to achieve best throughput

NR adaptive (SMART) – Beamforming

Specify min/max limits V and H planes Specify steering steps

ATDI I Critical Communications / RailComms

Massive MiMO & Beamforming (2/3)

NR adaptive (SMART) – batch import of beam patterns

Support broadcast and service beams: Batch importation and combination of multiple beams

MSI/RPE 2D reverse tilt Antena file must be reloaded	2D antenna H+V (1 polarizatio	n) ~ Zoom	Edit/select H-pattern Edit/select V-pattern
Tx pol OV OH OC OM Rx pol OV OH OC OM	Horizontal pattern	-90 Vertical pattern +90	Set to omni Multiport/Multibeam antenna (H) Multiport/Multibeam antenna (V) Convert to 3D antenna
Tx ant gain (dBi) 17.50 Rx ant gain (dBi) 17.50			Import .PLT 2D Import .FCC Import .ADF Import .MSI/.PLN Add .MSI/.PLN
	Antenna database 741784	_1855_X_CO_P45	Import all .MSI/.PLN from folder
D	iameter or size (m) 0.10	Aperture (°) 1.50 ar and far fields (m) 0.23	Export .PLT 2D Export .PLT 3D
	Two-line element cet - Satel		Continue

Massive MiMO & Beamforming (3/3)

Flexible 5G numerology modelling approach

Reflections in tunnel – Multi-Path (3D reflection)

Using the full-deterministic propagation models, HTZ supports 3D ray tracing which calculates reflectivity of tunnel walls, ceiling and ground.

It includes the Specular / Ray tracing (Smooth surface only) mode which is applicable for smooth surface reflection calculation such as tunnels. Only one reflected ray is considered for each reflection point, where Reflection angle = Incident angle.

* Lambertian: diffuse and partial specular for Rough surface computing the field strength received on all points of the simulation area considering the reflected signals contributions.

Multi-path reflections

3D reflec

Reflecti

Eleva Def

Rx	3D reflection settings			×
	Reflection method Cambertian: diffuse and partial specular - Roug Specular / Ray-tracing - Smooth surface only	gh surface		OK Cancel Clutter
	Frequency MHz	425.00		
tions	Roughness height (cm)	1.00		
ath	Rayleigh roughness criterion Surface is smooth if Rh < criterion Ray-tracing is not applicable for rough surfaces	12.46962 Smooth sur	cm face	
tion filter > (m) 0		Comput	æ	
fault coefficient 0,500	Parameters			
calculator	Maximum delta TOA for constructive FS (usec)	0.00	•>	
	Margin required if DTOA is exceeded (dB)	0		
	Synchronization threshold (dBuV/m)	0	(1)	
	Threshold	1		
	Sampling 1 /	0		
	Elevation filter >	0	m	

(1) Should be 3 to 6 dB below threshold

Coverage analysis (1/2)

HTZ provides coverage simulations and other network analyses such as:

- Tx/Rx UL/DL coverage
- 3D coverage
- Composite coverage
- Best server and best activated server coverage
- Site overlapping
- Simultaneous server and channels map
- Differences between sites

Figure 127, best server, terrain obstruction from site 338

Coverage analysis (2/2)

Example: Notion of deterministic predictions RX antenna height

Coverage Overlap Analysis

Indoor Tunnel Coverage

Tunnel (Pure indoor) – engraving

The walls of the tunnel are modelling; reflections calculated as well. The entire tunnel coverage can be attached to one object (e.g base station or repeater) and loaded in outdoor model.

ATDI I Critical Communications / RailComms

Auto Cell ID and neighbour planning (1/2)

Physical Layer Cell Identities (from neighbours)	>	×	Handover	dB
Max physical cell ID 504 Max number of sector(s) 3 Compute	oup stations one If same Network ID If same site code		Neighbour list]]
Align station color (1-12) to PHY_ID Maximize PHY_ID usage Use station neighbour list OK Cancel	 ○ If same coordinates Co-site distance <= 0.00 m □ Check only 	Image: Modulation (10) Modulation (10) 0.4) ✓ 256-QAM (10) Options Floor offset 0 Impd Handover 0 dB	PHY_CELL_ID 0 PHY_GRP_ID 0	
	KTBF (dBm) -92 Launch delay (us) 0 C/I req N=0/N=1 -127.0 Traffic Max DL UE (kbps) 294265 Max UL UE (kbps) 294265 Tx bandwidth (kHz) 60000. Rx bandwidth (kHz) 60000.	calc Neighbour list 0 / -127.0 85.13 PHY_CELL_ID 0 95.25 O O 0.00 Activity (pc) 100 0.00 O 0	Nureroiogy 00: 15 kHz - 20 to 275 RBs 1: 30 kHz - 20 to 275 RBs 2: 60 kHz - 20 to 275 RBs 3: 120 kHz - 20 to 275 RBs 4: 240 kHz - 20 to 138 RBs 5: 480 kHz - 20 to 69 RBs RB 275 SC 3300	
ATDL Critical Communications / PailComms			< > OK Cancel	

Auto Cell ID and neighbour planning (2/2)

File Map	Coverage	Microwave	Multipoint	Subscriber	Satellite	Radar	Localization	Pat	Neighbour			×
	Network calculation Network interference Network planning Network report Traffic Handover Station candidates Station polygon Search sites		n : ce : : :	AGL III AGL AGL AGL AGL AGL AGL AGL AGL					Handover margin Default handover margin LTE <-> LTE GSM <-> GSM GSM <-> DCS GSM <-> DCS GSM <-> GSM GSM <-> GSM GS	Neighbour candidates are: activated stations deactivated stations all Tx having NetID/BSC/ none Intra BSC/RNC/NetId Tx having same frequ Tx in DB station only* Options]	
	Cove	rage modificat	tion 3	, Neigl	nbour list	*			Rules Stations with same site code are neighbours Co-located stations are neighbours If delta azimuth <= 360	Wanted threshold RSCP threshold RSRP threshold KTBF Rx gain Delete coverage cach	Default auto 3G -95 4G 5G -115 -99 0.00] dBm] dBm] dBm] dB

Save...

IRF

OK

Cancel

Load...

RSRP/SINR/Throughput analysis (1/2)

RSRP/SINR/Throughput analysis (2/2)

- Vendor independent approach to throughput calculations
- 3GPP compliant throughput assessment
- Support for TDD/FDD, LTE & NR

tri t	Attenuated and truncated for	×	Load					
aç CI	Implementation losses Attenuation fact	DL	UL		OK Cancel	Save Options		
= =	Max b Number of l	its/Hz 8.00 ayers 2		GSM TETRA HSDPA TDD				
st at	Throughput (bps/Hz) = a.S(SNIF S(SNIR) = log2(1+SNIR	R).Layer(s) .) bps/Hz		E-UTRA FDD E-UTRA TDD				
-9	a = implementatio	on losses	~	NR RPMA				
0.00	dB	Smart ant	tenna discrimination		Adaptive Modulation and Coding			
2		Thresholds:	-115 dBm R	5	Shannon bound			
e swi	itching modes (AAS):		ICIC enhancement		Continue			

Subscriber modelling and traffic analysis

- Generate traffic scenarios
- Generate subscribers or import existing subscriber database
- Assign traffic profiles (handsets)

Traffic and QoS prediction simulation (1/2)

- Support for multiple scheduler configurations
- Model base station load
- Model smart UE antenna
- Support for AAS BTS antenna

Parenting 4G/5G										
Parameters	IRF mask (dB)	Schedulers								
RSRQ required -19 dB SNIR x/PDSCH required -6 dB ICIC enhancement 3 dB Thresholds -115 dBm RS / auto Thresholds:	N=0 0 Used N=10 50 used N=1 70 used N=11 50 used N=2 100 used N=12 50 used N=3 40 used N=13 50 used N=4 50 used N=14 50 used N=5 0 used N=15 50 used	MAX_SNIR (4G/5G) Round Robin (RR) Proportional Fair (PF) MIMO adaptive switching modes (AAS) (1)								
DL: RSRP threshold for RS and Rx sub threshold for RSSI UL: Base Station Rx threshold Activity factor weighting [IRF-10.log(activity)]	N=6 50 used N=7 50 used N=8 50 used N=9 50 used	Single Antenna Port (SISO or SIMO) Tx Div (Transmit Diversity) - MISO Spatial Multiplexing MU-MIMO (Multi user MIMO)								
Throughput vs SNIR	24.5-26.5 GHz and IC 16 kHz BW: 150, 450, 850 MHz), IEEE 802.11/802.16	(1) BS antenna must be set to AAS								
Max distance calculation Options Load Save	□ IRF from NFD matrix □ IRF from Tx/Rx C/I □ Global XPD -1 dB C/H or V: 3 db protection except if global XPD=0	DB subscribers								
buren	Rx bandwidth / Tx bandwidth	OK Cancel								

Traffic and QoS prediction reports (2/2)

					📐 Repo	rt listing														×
					Record	Subscriber #	Address	info1	Info2	Station #	Callsign	Group code	Wanted Power (dBm)	RSSI (dBm)	RSRP (dBm)	PUSCH (dBm)	RSRQ (dB)	SNIR PDSCH (dB)	Gain (dB)	SI ^
					1	1	adr 1			7	c000		-40.3	-39.8	-75.5	-68.1	-11.3	11.9	18.1	1:
					2	2	adr2			7	c000		-22.2	-22.1	-57.4	-50.0	-10.9	18.6	18.1	18
					3	3	adr3			10	c000		-48.5	-48.1	-83.6	-76.2	-11.1	14.2	18.1	1.
					4	4	adr4			7	c000		-42.1	-41.3	-77.3	-69.9	-11.6	9.7	18.1	9.
					5	5	adr5			7	c000		-20.7	-20.7	-55.9	-48.5	-10.8	24.0	3.0	2.
					6	6	adr6			10	c000		-46.2	-45.9	-81.4	-74.0	-11.2	13.5	18.1	1:
						-		_		9	c000		-49.9	-48.5	-85.1	-77.7	-12.2	7.3	18.1	7.
										10	c000		-58.5	-57.9	-93.7	-119.6	-11.4	11.4	18.1	1
		SUBS		TIONAL FAIR						10	c000		-43.9	-43.1	-79.1	-71.7	-11.6	10.0	18.1	1(
										8	c000		-50.3	-49.2	-85.5	-78.1	-12.0	8.0	18.1	8
BST #	Callsign	RB/slot	Offered RB	Connected	Offered (I	(bps)	QoS (pc)			8	c000		-38.3	-37.9	-73.5	-84.7	-11.2	13.6	18.1	1
1	c0000001	185	0	0		0.0	(0.00		10	c000		-50.5	-59.0	-96.1	-99.6	-12.7	5.5	21.1	
2	c0000002	185	58	2		200448.0	100	1.22		10	c000		-00.9	-50.9	-90.1	-00.0	-12.7	3.5	6.0	2
4	c0000004	85	225	2		200174.6	100	0.09		19	-000		-30.0	-53.8	-87.6	-01.5	-13.7	3.2	0.0	3.
5	c0000005	85	254	3		301477.2	100	0.49		9	c000		-53.5	-52.8	-88.7	-119.9	-11.5	10.7	18.1	1
7	C000006	185	232	4		401656.5	100	1.22		10	c000		-/1.2	-/0.0	-106.4	-122.9	-12.0	8.0	18.1	8.
8	c0000008	185	116	2		200448.0	100	0.22		4	c000		-48.1	-47.6	-78.9	-72.8	-11.3	12.3	6.0	1:
9	c0000009	185	116	2		200448.0	100	0.22		9	c000		-7.8	-7.8	-43.0	-35.6	-10.8	33.6	3.0	3:
10		185	406	7		701568.1	100	1.22		9	c000		-51.2	-51.2	-86.4	-115.4	-10.8	33.0	3.0	3:
12	c0000012	185	58	1		100224.0	100	0.22		4	c000		-55.1	-52.0	-85.9	-79.8	-13.9	2.8	6.0	2.
13	c0000013	185	58	1		100224.0	100	0.22		11	c000		-32.1	-30.5	-67.2	-85.4	-12.4	6.5	18.1	6.
14	c0000014	185	/54	13		1302912.1	100	1.22		10	c000		-38.3	-38.0	-73.4	-66.0	-11.1	14.8	18.1	1.
16	c0000016	85	202	3		300674.6	100	1.22		10	c000		-25.0	-24.9	-60.1	-52.7	-10.8	27.5	3.0	2
17	c0000017	85	650	6		603017.7	100	0.50		10	c000		-43.5	-43.2	-78.7	-71.2	-11.0	15.3	18.1	1
18	c0000018	85	182	2		201049.7	100	0.52		2	-000		47.0	44.0	92.2	74.9	12.0	5.0	21.1	-
20	c0000013	85	181	2		201081.9	100	0.54		5			-47.0	-44.9	-02.2	-/4.0	-12.9	5.0	21.1	5.
21	c0000021	85	402	4		402666.4	100	0.67		12	c000		-13.1	-11.4	-48.3	-40.9	-12.5	6.1	18.1	6.
22	c0000022	85	0	0		0.0	100	0.00		16	c000		-38.9	-38.2	-69.7	-63.7	-11.6	10.1	6.0	1(🗸
24	c0000023	85	585	8		803326.1	100	3.47												>

QoS network (pc): 100.34

Listing... Close

Connected vs Connectable: 83 / 83

Uplink SINR/Throughput – Monte-Carlo simulation

Statistics Spectrum Dat	tabase Object Report Tools Help	💹 Uplink troughput map - PUSCH			×
Map / Monte-Carlo > Coverage >	Uplink C/N map Uplink SNIR map PLISCH throughput map	Global noise rise method Noise rise (dB) 3,00	Clutter selection	All dutter No dutter	DEM selection (m) min 0 max 550
	PUSC sector loading MIMO beamforming coverage	C=wanted signal N=Base station ktbf+Global noise rise +I I=Interference from other activated BS		11 Forest/vegi 12 Z Airport	Grid 2
		Pass number 100 (nonce cano) Pass number 100 Selection: 1 sub / enodeB (random)	3 ⊻ Mean Urban	13 ⊻ Sea/Hydro	Single Antenna Port (SISO or SIMO)
		Perform parenting on best server C/N map C=wanted signal N=Base station ktbf+I		15 Road	Spatial Multiplexing MU-MIMO (Multi user MIMO) enodeB antenna must be set to AAS
		I=Interference from parented subscribers and from other activated BS ICIC enhancement 3 dB	7 Ø 8 Ø	17 Rail 18 Scattered trees	Usable RBs (UE) 6 Set to 1 if no 4G/5G
		RSRP Threshold -115	9 🗹 Buildings	19	Throughput
ATDI I Critical Communications / I	RailComms	Listing IRF Station list	DB sub Mod	del Parameters	OK Cancel

Handover Analysis

Figure 178, handover analysis for sites SPWC, m6886563& 423

Correlations and Model tuning

Importing measurement data

- Auto apply of Lee criteria to extract slow faded signal
- Lee criteria
 - ✓ 50 samples over 40 lambda
 - ✓ Extract slow faded signal
 - ✓ Increase confidence

Х

Correlations and Model tuning

Auto model tuning and calibration functions

- Correlation analysis between measurements and prediction
- Tune signal absorption per environment
- Tune signal penetration per environment
- Benchmark multiple propagation theories

Clutter...

Model..

Distance...

Management file names	
O Open Industrial O Clutter height tuning (diffraction	factor)
Input format: Min diffraction factor	0.5
Generic format: V[cenarator]V[cenarator]ESc(CP)	1.5
Secretaria (V and V and in sector)	0.1
Separator , X and Y are inverted 3 Mean Urban 13 Sea/Hydro	
Coordinate code 4DEC	
Conversion to dBu (+-dB) 0 f	0
Min range (measurement) -10000 5 🖉 15 🖉 Road Max attenuation (dB)	20
Max range (measurement) upd 6 0 16 Street Step (dB)	1
Threshold (dBu) 10.00 7 2 17 Rail	7)
Rx antenna height (m) 1.50	
Number of values on the second s	200
9 Ø Buildings 19 Ø Max attenuation (dB/km)	800
Set dutter to 0 on measurement point All dutter No dutter Step (dB)	50
Move measurements on vector line	

Station list..

Save

OK

Load

Cancel

Correlations and Model tuning

Sample correlation result (before tuning)

Prediction vs measurements: Standard deviation of error: 4.9 dB, 89% within 6dB & 96% correlation factor

Site	% < 6 dB	STD (dB)	Average error (dB)	Correlation factor						
Erskineville	86.26	4.19	-0.45	0.96						
Strathfield	89.7	3.83	-0.04	0.97						
Lidcombe	85.71	5.48	-0.13	0.94						
Seven Hills St		Not use	d for tuning see next se	ction						
Mortdale	93.86	3.04	-0.1	0.98						
Sutherland	87.3	4.31	0.27	0.97						
Gooma	88.1	4.47	0.02	0.96						
Wollstonecraft	80.1	5.64	-0.29	0.73						
Turramura	95.39	2.95	0.27	0.99						
Berowra	80.09	5.2	0.02	0.92						
Woy Woy	84.78	4.57	0.49	0.96						
Hornsby	90.23	4.18	-0.01	0.96						
West Ryde	t Ryde Not used for tuning see next section									
Table 11 correlation results for the test sites										

Correlations and Model tuning

TEMS Trace

ATDI I Critical Communications / RailComms

Train path analysis

ATDI I Critical Communications / RailComms

Composite coverage of outdoor & indoor (1/4)

Tunnel (Pure indoor) – prediction

HTZ calculates the indoor coverage plotted above ground but the correct location (X/Y) from either leaky feeder or Tz/Rx stations, which can be either 3G, 4G or 5G. That allows exchange with indoor project and outdoor project.

Composite coverage of outdoor & indoor (2/4)

Tunnel (Pure outdoor)

HTZ imports the tunnel vector files in the outdoor projects.

Composite coverage of outdoor & indoor (3/4)

Outdoor coverage over the tunnel areas

The coverage for a Yagi antenna positioned at the entry of the portal pointing outside the tunnel. Very often the indoor and outdoor antennas are on the same RF layer to ensure continuity of coverage.

Composite coverage of outdoor & indoor (4/4)

Outdoor coverage displayed over the tunnel without the coverage from the tunnel

Composite coverage between outdoor and indoor (tunnel) coverage which creates the coverage continuity

Study to quantify signal losses due to LOS obstruction (1/7) e.g. leaky feeder & cab antenna in a tunnel

Study background

- ✓ Leaky feeder and train radio antenna are typically installed to deliver Line-of-Sight conditions
- Leaky feeder is typically characterized by Linear and Coupling losses with the later one being measured and estimated by the manufacturer in LOS conditions. Departing from LOS conditions means there is additional scope of further attenuations which may or may not be tolerable in the current link budget.
- ✓ With measurements not readily available for such conditions hence Unity Alliance is seeking a consultation to derive these additional figures by constructing a computer model and through simulations.
- ATDI supplies radio network planning tools to manage every part of the network lifecycle from the initial radio network plans to optimizing coverage and reducing interference.
- ✓ ATDI is trusted by governments, operators, emergency services, and armed forces, we deliver professional services from expert engineers. Our greatest resource is the knowledge gained from over three decades working in the industry and an in-depth understanding of how the growing demands for spectrum affect radio users.

ATDI

Study to quantify signal losses due to LOS obstruction (2/7) e.g. leaky feeder & cab antenna in a tunnel

Scope of Study

- To compute additional propagation losses experienced due to obstructions of LOS including.
 Image below depicts the setup current being simulated using "HTZ communications".
- Estimate signal diffraction on the shoulder of the train between the Leaky cable and the Cab radio antenna.
- Estimate signal losses due to cab antenna discrimination as a result of signal angle-of-arrival due to the geometry of the setup and diffraction angle.

atdi

Study to quantify signal losses due to LOS obstruction (3/7) e.g. leaky feeder & cab antenna in a tunnel

Setup

ATDI I Critical Communications / RailComms

ATDI

Study to quantify signal losses due to LOS obstruction (4/7) e.g. leaky feeder & cab antenna in a tunnel

Diffraction Modelling

- Diffraction is simulated using a number of mathematical models. See table below.
- ✓ The level of diffraction varies between 8.7 and 16.4 dB with Deygout94 method being around 9.6 dB.
- \checkmark Deygout94 method is considered a reliable method for sharp edges.

Diffraction method	Predicted value
Deygout94	9.6 dB
Deygout 66	14.6 dB
Bullington	8.7 dB
Delta Bullington	16.4 dB
ITU-R P.526 Round mask	8.9 dB
ITU-R P.526 Cylinders	8.8 dB

Atdi

Study to quantify signal losses due to LOS obstruction (5/7) e.g. leaky feeder & cab antenna in a tunnel

Diffraction loss (Deygout 94)

ATDI I Critical Communications / RailComr

ATDI

Study to quantify signal losses due to LOS obstruction (6/7) e.g. leaky feeder & cab antenna in a tunnel

Cab Antenna Discrimination

Vertical pattern (VV)

Source: TLA400-65 @410 V1.0.adf Frequency: ~410 MHz

- Marked positions are angles for which we expect the diffracted signal to come through.
- Horizontal attenuation is not significant, ranging from 0 to 1 dB with attenuation being around 0.2 dB at +/- 90 degrees (signals coming from each shoulder)
- Vertical attenuation is ranging between 0 and 16.5 dB.
 With value being around 4.5 dB discrimination for signals coming from the horizon (0 degrees).

Study to quantify signal losses due to LOS obstruction (7/7) e.g. leaky feeder & cab antenna in a tunnel

Summary

- Signal propagates by many concurrent mechanisms
 - ✓ Reflections: Deliver signal beyond LOS, can enhance or degrade the signal and result in low-scale signal fluctuations. Modelling requires very advanced knowledge of the materials and their structure.
 - ✓ Diffraction: Deliver signal beyond LOS, degrades the signal depending on frequency and level of obstruction
 - ✓ Conductivity especially for very low frequencies
- While all above is happening all the time, it would be sufficient to consider the mechanism delivering the highest signal level.
- This study is focused on propagation by diffraction since the Leaky cable's specifications already account for other propagation anomalies in a tunnel environment except for diffraction.
- The study estimated diffraction loss to 9.6 dB due to obstruction of LOS between the leaky cable and the Cab radio antenna.
- The study estimated the antenna discrimination loss to 4.5 dB for VV scenario. Assuming both the cable and the cab antenna are of the same polarization (V). And assuming the polarization is maintained.
- Total additional loss (on the top of Linear and Coupling loss) is estimated to 14.1 dB

National Coordination procedures to improve coexistence

between MFCN and GSM-R

Why coordination procedures to improve coexistence between MFCN and GSM-R is required ? -> Measurement campaigns performed during 2013-2014 concluded that current GSM-R receivers are affected by intermodulation products generated from a wideband signal such as UMTS/LTE, two narrowband signals such as GSM, or a combination of wideband and narrowband signals. Wideband signals can impact the whole GSM-R downlink frequency range. UMTS, LTE/5MHz and LTE/10MHz have similar interference potential

Methodologies and methods:

-> ECC Report 229 provides a calculation method that gives the maximum MFCN OOB level below 924.9 MHz and anywhere at 4m above the rail tracks, which should trigger the proactive coordination process.

-> ITU-R SM1134.1 recommendation provides guidance for intermodulation interference calculations in the land mobile service

National Coordination procedures to improve coexistence between MFCN and GSM-R

File Map	Coverage Microwave	Multipoint	Subscriber S	Satellite Radar	Localization Path	n Measure Statistics Spectrum	atabase	e Objec	ct Report T	ools Help								
		A	.il	E		E	11		, 00	E		I	i h	55	8	F 2		101
Selector	Recorder	AGĽ	Settings	List	Tx/Rx	MW Link	Path		Polygon	Rectangle	Line	Coverage	Profile	Analysis	45:1	Overlay	Reset	Layer
						une dubiin (Anistan Brint)			Ť	×								
						Max interference distance (m	1000		(ж								
						Ref. intermodulation threshold (dBm	-36	>	Ca	ncel			_					
						Intermodulation threshold margin(dB)	0		GSM-R: Wante	d 39 dBuV/m -98	dBm / Unwanted	-39 dBm						
					Con	ected intermodulation threshold (dBm)	-36		GSM-R: Wante GSM-R: Wante	d 42 dBuV/m -95 d 45 dBuV/m -92	dBm / Unwanted dBm / Unwanted	-38 dBm -37 dBm						
						C/I IM3 required (dB	15	(GSM-R: Wante	d 48 dBuV/m -89	dBm / Unwanted	-36 dBm						
						Inter system protection ratio (dB	5		GSM-R: Wante GSM-R: Wante	d 49 dBuV/m -88 d 51 dBuV/m -86	dBm / Unwanted dBm / Unwanted	-36 dBm -35 dBm						
						IP3 (dBm	0		GSM-R: Wante	d 54 dBuV/m -83	dBm / Unwanted	-34 dBm						
						Ref. coverage threshol	45	-	Intermodulatio	on threshold: -36								
								10										
						⊻ ZA+6		d (from un	wanted station	c)								
						Best se	rver (2nd serv	ver	2)								
					(1) Trig (2) Inte Referen Wanted Unwant Test po	Subscr er = Ref. intermodulation threshold r system protection ratio (C/I addet the ce ECC 229 - ITU-R SM 1134 stations are activated (wanted signal ed stations are deactivated ints are activated subscribers	 Intermod thr strongest s 	e ireshold) server)										

ATDI I Critical Communications / RailComms

ATDI I Critical Communications / RailComms

Tunnel Modelling

Tunnel model GIS conversion

Source data formats for rail corridors/centre lines in x, y and z: ESRI (.shp), AutoCAD (.dxf), LiDAR sensors (.LAZ or .LAS)

Leaky Feeder Simulation

Leaky feeder coverage analysis (1/3)

HTZ simulates a leaky feeder in an indoor environment such as tunnels to model the following aspects:

- ✓ Signal source
- ✓ Cable RF properties
- \checkmark Propagation losses inside and outside the cable
- ✓ Receiver's signal level requirements

Leaky feeder coverage analysis (2/3)

Leaky feeder parameters set up in HTZ:

- ✓ Cable height from the ground
- ✓ Ingress power to the leaky feeder
- ✓ Radiation pattern (typically equally distributed)
- ✓ Connectors/splitters/combiners loss

📐 Tx/Rx pa	arameters: 20001 Leal	dy.			×
General Pat	terns Channels Site	Advanced			
					\$
Type (0))	Signal (2)	Modulation (0)	NFD / TS-RIF	
Tx/Rx A	(0) ~	Generic (2)	 undefined (0) 	v	·
			Options	Traffic parameters	
	Cov. threshold (dBm)	-95	Activity (pc) 100 ul.d 100	Slot/cx 0	
	Ex threshold (dire)	upd	ENC .	Reserved slot 0	
	KK Intestina (dam)	-90	filter/s)	Erlang 0.0000	00
	KTBP (dbm)	-126 Calc	Channel (#)	% plot power 15.000	
	Noise floor	0	Floor offset	% paging pow(!) 0.000	
	T1L (d8W)	-137 57	Availability 0.000000 PC	it cost could a cas	
WP X local	don - Y location Hei	pheters: phtm ₩P Xke	cation - Y location Height m	Rem6	Cese
0 153.0	1282 27.4730	25	1010	tievaten	Land (TRV)
153.0	1294 27.4730 3.0		rane.	ASL elevation ASL elevation	East (TRE)
153.0	128527.4731 3.0		name	Relative elevation	Seve (100)
153.0	1286 27.4732 3.0		name	OFaver	Corn transfert
153.0	128727.4733 3.0		nane	O field strength	Import (x,y,z,p,e,tilt,e)
153.0	128927.4735 3.0	_	none	Amplification	Export (x,y,z,p,a,tit,a)
153.0	129127.4736 3.0	_	nane	C Arbena tit	Power graph
153.0	1292 27,4738 1.0	_	none	Tit from parans	Elevation math
153.0	129327.4739 1.0	_	none	Parameters	and a state of the
153.0	1297 27,4742 1.0			Nome 4= 8 unknown	
10 153.0	1002 - 127,4746 3.0	-		Elevation security 30	
111.0	0000			Speed (km/h) 158	
	1008			Corridor width (m)	
	none		none	Parameters	
	none		none	Canner ODF @Talks	
	none		none	Damag ath	
	none		none	Kemove para	

Leaky feeder coverage analysis (3/3)

ATDI I Critical Commu
Microwave link, P2MP, Backhaul, mmW bands

- Profile budget calculations
- Antenna and equipment database
- Frequency and space diversity
- Multi-K factor calculations
- Climate and rain parameters
- Reliability calculations
- Automatic antenna orientation
- Link optimization
- Automated frequency planning
- Interference calculations
- Quality objectives calculations (ITU-R F. 1703 and ITU-T G.827
- MIMO Antenna systems
- M2M, D2D, SCADA, CDMA 450, MMDS, WiMAX, LMDS, etc.

ATDI

				Equipment list								
									Find:		>	
				Record Equipment	Min frequency (MHz)	Max frequency (MHz)	Power (dBm)	Bit rate (Mbps)	Bandwidth (MHz) 1	'hreshold 10-6 (dBm)	Modi ^	1491
				1475 PASO 1476 PASO	10700 12750	11700 13250	25 25	13.00 13.00	7.0000 -	93.0 92.5	QPSi QPSi	Goto reco
Microwave link parameters: 7-8 1969328				1477 PASO	14200	15350	25	13.00	7.0000 -	92.5	QPSł	List
General Patterns Site Equipment Objective				1479 PASO	17700	19700	24	13.00	7.0000 -	92.0	QPSi	Add
Status Potential (2) V Frequency plan V V bi-directional Ident 9009328 User Statuett SF				1480 PASO 1481 PASO	21200	23600	22 24	26.00	7.0000 -	86.0 92.5	16-Q	
				1482 PASO	24250	27000	20	26.00	7.0000 -	85.0	16-Q	
Station A Station B Common				1483 PASO 1484 PASO	24250 24250	27000 27000	23 19	13.00 26.00	7.0000 - 7.0000 -	91.5 85.0	QPSł 16-C	
Address 4330, Rogaland, Norway Address Ånestadvegen, 4360 Var Barlumuur (vn2) 28000.00 info (1) info (1) Spacing (MHz) 161.000000				1485 PASO	27500	29500	22	13.00	7.0000 -	91.5	QPSI	
Channel 1 Channel 1 Div spacing (MHz) 0.000000 4Rx				1486 PASO 1487 PASO	31800 31800	33400 33400	19 22	26.00 13.00	7.0000 - 7.0000 -	85.0 91.5	16-Q QPSł	
Frequency (MHz) 7456.000000 Frequency (MHz) 7456.000000 Combiner (dB) 0.0				1488 PASO	37000	40000	18	26.00	7.0000 -	84.0	16-Q	
Ohigh Iow ● high Iow Dynamic (ab) 0 □ </td <td></td> <td></td> <td></td> <td>1490 PASO</td> <td>40500</td> <td>43500</td> <td>17</td> <td>26.00</td> <td>7.0000 -</td> <td>82.0</td> <td>16-Q</td> <td></td>				1490 PASO	40500	43500	17	26.00	7.0000 -	82.0	16-Q	
1st antenna (m) 30.00 1st antenna (m) 50.00 Thresh. 10-6/10-3 -83.0 -86.0 dBm				1491 PASO	40500	43500	20	13.00	7.0000 -	88.5	QPSł	
Gain (dB) 35.30 T/R 35.30 Gain (dB) 35.30 T/R 35.30 Kn (signature) 0.00				1348 ITALTEL SRA	17700	19700	16	5.13	3.5000 -	88.0	unde	
2nd ant: 0.00 m 0 dB 2nd ant: 0.00 m 0 dB KTBF (dBm) -95 calc				1349 ITALTEL SRA 1350 ITALTEL SRA	17700	19700	16	10.26	7.0000 -	85.0	unde	
Losses (dB) 0.00 tx 0.00 rx Losses(dB) 0.00 tx 0.00 rx Modulation OPSK (3) V				1351 ITALTEL SRA	17700	19700	16	18.98	14.0000 -	82.0	unde	
Power (dom) 21.00 Power (dom) 21.00 C/I reg N=0/N=1 23.0 0.0				1352 ITALTEL SRA 1353 ITALTEL SRA	21200	23600	16 16	37.96 5.13	28.0000 -	78.5 87.5	unde	
EIRP A (dBm): 55,30 EIRP B (dBm): 55,30 NFD/TS-RLF				1354 ITALTEL SRA	21200	23600	16	10.26	7.0000 -	84.5	unde	
OOB (dBW/MHz) 0 OOB (dBW/MHz) 0 Tropo	Microwave link parameters: 7-8 i969328		×	1355 ITALTEL SRA 1356 ITALTEL SRA	21200 21200	23600 23600	16 16	18.98 18.98	14.0000 -	81.5 81.5	unde unde	
Squint loss 0.0 Noise fig. 0.0	General Patterns Site Equipment Objective			1357 ITALTEL SRA	24500	26500	16	37.96	28.0000 -	78.0	unde v	Close
Passive plan / Back to back Parameters Reflector 0.0 dB Date (yyyymmdd) 20140523				<							> L	Cluse
				Double click . select - Right click . mouny						stretore must be set	to none	
Load Save Report Equipment Multimedia Frequencies SQL equipmt Import MWP < >		radio pattern envelop Antenna type		Antenna selection (RPE 3D)								
OK Annuler		Use RPE 3D files 🗹 💿 Standard a	ntenna	Manufacturer :		Properties :						
		BCP030-245 O SU-MIMO S	D	Other ^	NAME FP4F-13							_
		Select antenna a OMU-MIMO		Andrew Corporation Antenna Concepts Inc	Manufacturer: ANDRE	N CORPORATION						
		BCP030-245 O SIMO		Antennas for Communications RCM ltd	Date 5-9-1997 Gain: 22.40 dBi							
		Select antenna b		Q-par Angus Ltd Celwave	Aperture: 11.5 Degree Frequency: 1350 - 153	is - Diameter: 1.27 (calci 15 MHz	ulated)					
	H-pattern V-pattern H-pattern V-pattern	2D Both ✓		Radio Frequency Systems TriPoint Global Communications	File 'C: \ATDI\ICS teleo	om EV x64\BASE\RPE\AN	NDREW (3032. ADV	r				
	Aperture (°) 2.60 Aperture (°) 2.60	Parabol		Antenna : *	<							
	Diameter/size (m) 1,1 Diameter/size (m) 1,1	ITU-R F. 1245 Gain A (db)	35.30 1/R 35.30	Name File ^								
	Tilt (°) -1.120 Tilt (°) 1.120	ITU-R F.699-4 Gain B (dB)	35.30 T/R 35.30	FP12F-19 6406D.adw	10			·		(нн,н	v)	
	Azimuth (°) 233.42 Azimuth (°) 53.42	Wen Fix		FP12F-23 FP12F-23.a					×	-(vv,v	י	
	OAA (°) 126.57 OAA (°) 53.43	Other antennas		FP12F-23 6916D.adw FP12F-23D 6916 adw	20		7					
	Polarization Tx OV OH Polarization Tx OV OH	Select .ADH		FP12F-25 FP12F-25.a								
	Polarization Rx V OH Polarization Rx V OH	Select .PL1		FP12F-25 6908D.adw FP12F-65D 6908.adw	30		A			N-		
	Ôm Ôc Ôm Ôc	Orientation (k=4/3)		FP4-23D 6953.adw	40		/ <mark> </mark>					
	V pol disc (dP)			FP4-25D 6955.adw								
	x por disc (db) 0 xP1 (db) 0		< >	FP4-71 FP4-71.adv								
	v hou riter (rite) 0 ve.tu (rite) 0		< >	FP4-71 FP4-71.adv FP4-71 6132.adw FP4-71 3032.adw	50 -180 -160 -140	120 - 100 - 80 - 60 - 4	0-20-15 -10	-5 0	5 10	15 20 40 60 80	100 120 1	40 160 +
I Critical Communications / RailComms	x hounger (min) 0 va.n. (min) 0		< >	FP4-71 FP4-71.adw FP4-71 6132.adw FP4F-13 3032.adw <	50 -180 -160 -140	-120 -100 -80 -60 -4	0 -20 -15 -10	-5 0	5 10	15 20 40 60 80	100 120 1	.40 160 +
I Critical Communications / RailComms	x hounger (ma) 0 varia (ma) 0			FP4-71 FP4-71.adw FP4-71 6132.adw FP4-71 3032.adw V > Rebuild Index file	50 -180 -160 -140 V-V H-H V-H	-120 -100 -80 -60 -4 H-V Edit	0 -20 -15 -10	-5 0	5 10	15 20 40 60 80	100 120 1	140 160 +

ATDI I Critical Communications / RailComms

End of Document